On some nonlinear inverse problems in elasticity
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Inverse problems in elasticity
This article is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters, or buried objects such as cracks. These inverse problems are considered mainly for threedimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview som...
متن کاملLinearized Inverse Sca'itering Problems in Elasticity
Using the single-scattering approximation we invert for the material parameters of an acoustic two-parameter medium and then for a three-parameter isotropic elastic medium. Our procedure is related to various methods of depth migration in seismics, i.e. methods for locating major discontinuities in the subsurface material without specifying which quantities are discontinuous or by how much they...
متن کاملApproximative Inverse for Linear and Some Nonlinear Problems
In this paper we present a method for solving problems Af = g by constructing an approximative inverse which maps the data g to a regularized solution of this equation of the rst kind. No discretization for f is needed. The solution operator can be precomputed independently of the data. This works for linear problems and for nonlinear problems with a special structure. The regularization is ach...
متن کاملApproximate inverse for linear and some nonlinear problems
In this paper we present a method for solving problems such as Af = g by constructing an approximate inverse which maps the data g to a regularized solution of this equation of the first kind. No discretization for f is needed. The solution operator can be precomputed independently of the data. This works for linear problems and for nonlinear problems with a special structure. The regularizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Teorijska i primenjena mehanika
سال: 2011
ISSN: 1450-5584,2406-0925
DOI: 10.2298/tam1102125a